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The RAPIDS Institute =~ RAPIDS/

Solving computer science and data challenges for Office of Science application teams
to achieve science breakthroughs on DOE platforms.

= Technology Focus Areas . Application Engagement &
Community Outreach

— Data Understanding — scalable methods, robust
infrastructure, machine learning

— Scientific Data Management — I/O libraries, coupling,
knowledge management : _ _

— Platform Readiness — hybrid programming, deep > s
memory hierarchy, autotuning, correctness 5 a E
. IR Y N .- B S S O __| -
= Application Engagement & ][&E c 8
— Tiger Teams engage experts in multiple areas g = o .%
— Software productivity: verification and validation, etc. ST 2 c £ ©
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Platform Readiness
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Exascale: End of the CMOS Era cRas

O(100 TF) per node

Wide vectors / GPUs Memory system Disk for Flash for NVM for
More for specialized procs on package archive main storage storage cache
{"_‘ oo

E ::5::?:5: 5:;;::,:""}’;/;7;

O(100k) nodes, ~30-50 MW
O(10 Exaflops)

Low diameter networks with optics

Over the next decade, computers won’t change that much from the current model.

©2019 Cray Inc. S. Scott, “Beyond Exascale: Playing the CMOS Endgame,” SOS23, March 2019.



Platform Readiness

~RAPIDS/

Preparing scientific codes for current and upcoming system through application of

best-in-class expertise and tools.

Performance
Modeling/Analysis
* TAU: Performance
Analytics & Tuning for
Heterogeneous HPC
* Roofline: Easy-to-
understand, visual
performance model

Portable
Programming

* For heterogeneous
systems, deep
memory hierarchies

» Papyrus: abstractions
for shared data using
map, vector, and
matrix modalities

Code Generation
and Autotuning
* CHILL: model-based
Autotuning
» Sweeps optimization
parameters for target
platform

« Enables effective use
of accelerators without

— multiple code versions

Intel Haswell (i7-4770)
2.4M2 Matrix, 430M Nonzeros
2

256.0 T Generic Machine
128.0

Template Container Library (TCL)

64.0
map<Key, T> vector<T> matrix<T>

©
<]
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16.0

Virtual File System (VFS)
8.0

attainable Gflop/s

Uniform Aggregate NVM Storage Image
4.0

2.0

Speedup

Localty-aware Localty-independent
NVM management NVM management

+pragma SIMD

osx
o
SN R ES e 1+ short vectors
05 ) | £ | £ ) £ L) 03¢
. B
Yg Uy U, 1 2 4 8 16 ol o Tov T o T o 5 o U baseline CHILL
actual flop:byte ratio (o o T Tl B B Bl [ione] oce 01x
rivate N

10

actualflop:byte

P Shared NVM Archi 00x
‘e.g. Summit (ORNL), Sierra (LLNL) ‘e.8. Cori (NERSC), Trinity (LANL/Sandia) CHILL Manual

Program
Correctness

+ CIVIL: Static
verification of HPC
programs

* Uses static analysis
techniques over well-
defined input ranges to
do symbolic execution

* Enables Verification
equivalence of two
implementations




Roofline Performance Modeling ~—7RAPIDS/

ASCR Base & LDRD

Developed Roofline concep
2006-2011:

« Easy-to-understand, visual
performance model

» Offers insights to programmers
and architects on improving
parallel software and hardware.

2560 1 Generic Machine
128.0

peak DP

64.0

mul / add imbalarice

32.0

16.0 wv/gdt SIMD

8.0
4.0
2.0
1.0
0.5

w/out ILP

attainable Gflop/s

actual flop: biyte’”

-

Yy U, U, 1 2 4 8 16
actual flop:byte ratio

Proof of concept successfully
applied to numerous computationa
kernels and emerging computing
systems.

SciDAC3 Development

Roofline augmentation
under SciDAC3
2013-2017:

+ Collaboration with FASTMath
SciDAC Institute

+ Developed Empirical Roofline
Toolkit (ERT) with public releas
03/2015, with Roofline Visualiz

* Created community tool for
automatic hardware
introspection and analysis

Roofline Model, Mira MiniDFT

Al experments run using
1MPI task X 64 OpenhP threads.

i

P 4nn Autom
- Rooflin
: ’ code u.
to diag
perfor
proble
for DO
SciDA
codes.

Atainavie GFlops
N\

Pefomance GRopa/sec) NG eo-ox

e ||| ] S

Outcome & Impact

Roofline has become a broa:
used performance modeling
methodology across DOE

Intel has embraced the appr:
and integrated it into its
production Intel® Advisor

Collaboration with NERSC to
instrument and analyze exec
of real applications on mach
such as Edison and Cori

‘‘‘‘‘‘

30052

o027
S Tme: 03465 Tota Tme: 0.3465

Souce [ Toa Tine| % | toopime] ¢ | T

20 B gor (=2 i_<=i_2 i) 00345
0

20 ali_] = aali_ +3 % asdm] - ali_ - 11 o1sts |

Snapshot of existing Intel Rooflii
tool in practice.




Performance Observation, Analytics,and = RAPIDS/
Tuning for Heterogeneous Platforms with

TAU

» Heterogeneous software stacks
— Languages: OpenMP, OpenACC, CUDA, ROCm
— Libraries/Metaprogramming: Kokkos, RAJA
— Hybrid: MPI+X
= Runtimes
— OpenMP, MPI, 1/O, asynchronous multitasking

= Compilers and autotuners
— LLVM, Chill, Oreo, Active Harmony, OpenARC

» Heterogeneous hardware measurement
— Memory, Power, Network

» |[ntegration with ADIOS2 for both I/O library
measurement and ADIOS2 output of application
performance data




Static Verification of HPC =~ RAPIDS/
Programs (CIVL)

source i \ ABC ABC CIVL ﬂD-» Verification
C or Fortran parser Abstract Syntax Tree Model Ver"l et R\?SU/"
. es
with v No+trace
MPI—-CIVL-C
MPI, ABC )_T CIVL ( SARL )
CUDA, pretty- L CUDA—CIVL-C model- 1
gtﬁﬁggﬂdz printer —»OpenMP—CIVL-C auleEy / v
— Pthreads—CIVL-C (CVC4)( Z3 )(WhyS)
e Source may include CIVL-C primitives: e \lerifier uses symbolic execution to
input, output, assert, assume, ... check properties for all possible inputs
e All concurrency translated to CIVL-C (within specified bounds)
e Fortran and C translated to same e Absence of: assertion violations, deadlock,
intermediate language, CIVL-C illegal pointer operations, out-of-bound
e Program may be composed of multiple indexes, OpenMP data-races, ...

translation units (including Fortran+C) e Verify equivalence of 2 implementations




Reproducible Performance Analysis ~—~RAPIDS/
with HEP and NUCLEI

Scientific Motivation
Develop a data analytics platform for creating and reusing the

Branch misp

al cache misses

performance analysis workflows for improving the Sources of performance degradation
i in the highest execution-time function TLB data misses
performance of DOE science codes. T R ool KL (HEP)

= HEP Event Tracking: Effective utilization of many-core SIMD and SIMT e
= NUCLEI: Exploiting hybrid distributed- and shared-memory parallelism in YT+ o [ s v oo
integrated legacy and newly developed codes 5
Significance and Impact 5
By enabling customizable, reusable performance analysis | . .~ . _»".';l ZZtovféfﬁ@%e\ggﬁilcgfﬁggggon
that can be maintained and extended by application — i,;!,.i;;!{dj’ff highlighting vectorization on Intel
teams, we can reduce the reliance on expert help and . LY S,kly_’ake Gold (NUCLED
speed up performance optimization. Wt ‘ Ll
2 "“*“““"'n‘:“"" Jop Thoed 20 2 *"“*’2;""”“ 2 2] Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

Research Details

® Parallelized Kalman filter tracking, mkFit (HEP Event Tracking): Used TAU
Commander and Python Pandas to create performance analysis “recipes”.
Achieved 2.7x speedup from explicit vectorization and > 10x from shared-
memory parallelization on KNL; 4.4x speedup when integrated into main 200

8.00

Strong scaling on Skylake Gold of
OpenMP hit finding code (HEP)

CMSSW framework (without optimizing data conversion). 00 ; PRI % o
® HFODD (NUCLEI): Used TAU and Intel's VTune and Advisor tools to create
automated analysis workflows for shared-memory scaling and vectorization. u hggg%gff_é—ggg}g;e 2% Fermilab O OREGON
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Data Management
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Technology Change in

Storage Systems

Solid-state disk vs. hard disk drive pricing
(per GB ratio)

12
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2015 2016 2017 2018 2019 2020 2021

Source: Hyperion research
https://www.storagenewsletter.com/2018/08/07/flash
-storage-trends-and-impacts
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Evolution of the NERSC storage
hierarchy between today and 2025

Use Case

(Retention) 1093y 2020 2025
iTemporary RustBufer Platform

Platform
integrated
storage

integrated
storage

------------- _-
I Campaign
i (<1 year)

.............

i Community
' (> 1 year)

1 Forever
' (> 1 year)

Continued decline in cost of SSD capacity relative
to HDD has led to plans to employ SSD-backed
platform storage, integrated into the platform.

G. Lockwood et al. “Storage 2020: A Vision for the Future
of HPC Storage,” October 2017,
https://escholarship.org/uc/item/744479dp



https://www.storagenewsletter.com/2018/08/07/flash-storage-trends-and-impacts
https://escholarship.org/uc/item/744479dp

Data Management

Deploying and supporting efficient methods to move and manage data in a scientific

campaign.

Performance
Monitoring
* Understanding of I/0
performance at scale

 Darshan: “Always on”
statistics gathering

» TAU: Fine-grained I/O
tracing of operations at

multiple layers

Mira: Jobs I/O Throughput
3 Syster Deakr2£OGB/s I ! ;
1% Peak

110 Throughput

=
b4

1B 1KB 1MB 1GB 178 1PB
Number of bytes transferred

Storage and I/O

* HDF5: A data model,
parallel I/O library, and
file format for storing
and managing data

+ Parallel netCDF:
Provides parallel
access to traditional
netCDF datasets

* ADIOS: community 1/0
framework to enable
scientific discovery

100 ADIOS: zlib

put Tor

parallel 1/0 throughp

Knowledge
Management

« FastBit: Organize and
quickly find records
across files generated
and used during a
scientific campaign

* Manage and query the
data across a scientific
campaign

Metadata File

~RAPIDS/

Code Coupling

 Dataspaces & SST2:
In-memory storage
distributed across set
of cores/nodes, using
RAM and/or NVRAM

¢ Fast I/O to couple
codes together
asynchronously

* In-staging data
processing, querying,
sharing, and exchange




Performance Monitoring “~RAPIDS/

Enabling understanding of I/O performance at scale

Mira: Jobs I/O Throughput

= Darshan ‘
— “Always on” statistics gathering —”—L 5
— Observes |/O patterns of applications running [ i
on production HPC platforms, without S B
perturbing execution, with enough detail to o . s -
gain insight and aid in performance debugging $
" TAU Kmitor ey tantrd”

— Fine-grained tracing of I/O operations at
multiple layers

— ADIOS?2 integration: integrated profile
instrumentation of ADIOS2 and ability to
stream TAU application performance data
directly out to ADIOS2 at runtime




Storage and I/O ~RAPIDS/

Libraries/frameworks to assist in fast and portable 1/O
= HDF5

— A data model, parallel I/O library, and file format for
storing and managing data

Applications

PnetCDF

caching/aggregation layer

— Flexible, self-describing, portable, high performance m JJ/L
= Parallel netCDF -
— Provides parallel access to traditional netCDF datasets T
— Includes algorithms for accelerating common patterns Pctcos ok ke e v mors e
such as multi-variable writes R
= ADIOS ADIOS is used for the backend for SKA data movement/storage
— A community 1/0O framework to enable scientific Y T N x| [ —=
dlSCOVGf'y l ‘ T____I_rm—g_s_y_th___a_p;__fi:

— In-memory code coupling for applications to other

p o S —_—
1 ! Data H Imaging le—— Apios2 ‘ :
| I | Product J

I

applications and/or analysis/visualization g - ‘ 3
— Incorporates the state of the art I/O techniques for KlA =y Wl
checkpoint, self describing data, and in situ data Wil oo
movement between codes vt bt RS e (202 |

\ Visibility Ingestion Graph
« _Time (sequence of epochs)




Code Coupling: DataSpaces ~RAPIDS/

In-memory storage distributed across set of cores/nodes, using RAM

andlor NVRAM

Runtime data
I coupling

‘ Online data

| analysis
and

I processing

The figure shows an in-situ fusion simulation
workflow with code coupling and in-situ data
processing. DataSpaces provides a semantically
specialized shared-space abstraction using staging
resources to support dynamic and asynchronous
coordination, interactions, and data exchanges
between components of an in-situ workflow.

» Fast I/O to asynchronously couple
codes together

= Couple simulation, visualization,
analysis, and performance monitoring

» |n-staging data processing, querying,

sharing, and exchange

— Virtual shared-space
programming abstraction

— Provides an efficient,
high-throughput/low-latency
asynchronous data transport

— Predictive data movement and
layout



Global Particle-in-Cell Simulation of ~RAPIDS/
FUSion Plasmas Peak 1/0O performance for writing 50

Scientiﬁc Achievement checkpoints in GTC using ADIOS on 512
des of Summit GPFS

Energetic particle (EP) confinement is a key physics issue for A

the burning plasma experiment ITER. By enabling GTC with the

ADIOS framework, we can finally write the majority of the

1 147
physics data with minimal impact on the code performance on 1
the Summit HPC resource at the OLCF Gre “s’”gAD’OS on

2.5

2

Bandwidth (TB/s)

]

Summi, can reach near-

Significance and Impact peak, 2.2 TB/s for GPFS.
— GTC can generate data, over 100 TB of physics data every | Writers Per"°°'e
hour Tim.e to write one step of snapshot data
— GTC has been equipped with ADIOS to allow all of the | using POSIXI/O compared with ADIOS

relevant physics information to be written to the Summit 0.5
GPFS file system in less than 3% of the total runtime

— New data analytics is being written for GTC to work in both
post-processing and in situ workflows

o
N
a

o
N

Time to write
snapshot data was

Time (seconds)
o
s

improved by 50x.
Research Details
—A new “engine” inside of ADIOS was developed to allow " oo
for extreme performance for Particle In Cell code 1/0O 0 oo —

L. Wan, K. Mehta, et al, “Data Management Challenges of Exascale Scientific Simulations: A Case Study with GTC and ADIOS”, ICCM 2019 (accepted)
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~RAPIDS/

Data Understanding

Facilitating understanding of large and complex science data through robust and
scalable analysis methods, including learning approaches.

Visualization Scientific Data Analysis Machine Learning
« Visualization tools that leverage * Feature detection for visualizing » Supervised learning methods,
modern HPC and comparative analysis including deep learning for object
* In situ frameworks, to enable - Geometric analysis: classification
efficient system usage Delaunay/Voronoi tessellation * Unsupervised learning methods,
« Scalable infrastructure: service - Statistical analysis of ensemble including dimension reduction
oriented data analysis and and uncertain data * Scalable parallel graph
reduction « Uncertain flows from ensemble algorithms
* Leveraging deep memory modeling  Sparse inverse covariance
hierarchy, on-node parallelism - Topological features in scalar matrix estimation
* Analysis/visualization of high fields

dimensional datasets




Visualization =~ RAPIDS/

Feature-rich visualization tools that can be run at scale, in S|tu

= Successful existing tools: ParaView and Vislt, both built on top

of VTK, take advantage of massively parallel architectures of
modern super-computers

» |n situ frameworks, Vislt/libsim, ParaView/Catalyst, ADIOS,
Sensei, enable using these s stems efficiently with the

simulations, e. g., to visualize live simulations avoiding the 10
bottleneck

= Scalable infrastructure: service-oriented data analysis and
reduction, co-analysis with performance data

= Major focus on adapting to the deep memory hierarchies and
massive on-node hybrid parallelism (VTK-m)

» Also useful information visualization techniques (EDEN),
techniques for analysis and visualization of high-
dimensional datasets

V!S \VW’\( Il paraview vri (™




Scientific Data Analysis =~ RAPIDS/

Scalable methods for finding and analyzing features of importance

= Expertise in feature detection, traditionally for visualization and
comrf)adrative analysis. Moving forward as input to machine learning
methods.

= Geometric analysis (tess): scalable computation of Delaunay and
Voronoi tessellations, e.g., for density estimation in cosmological data

= Statistical analysis of ensemble data (edda):
— representation of large scale uncertain data
— analysis of ensemble and uncertain features
— exploration of parameter space for ensemble simulations

= Uncertain flows from ensemble modeling (fluid dynamics, climate,
weather)
— Generalizing flow features for uncertain data
— Surface Density Estimates to quantify uncertaint?/
— Scalable algorithms to stochastically trace particles

= Topological features in scalar fields
— Scalable computation of merge trees, contour trees, persistence
diagrams (used in cosmology, combustion, materials science,
etc.)
— Useful both for visualization and for comparison of simulations, to
each other and to experiments




Statistical Super Resolutions for Large =~ RAPIDS/

Scale Ensemble Cosmological Simulations

Scientific Achievement

Enable scientists to reduce the storage space requirement when running large
ensemble simulations, while still make it possible to perform full scale
simulation parameter exploration for post-hoc analysis

Significance and Impact

With the statistical signatures, it is now possible to reconstruct
simulation output of novel parameters that was not saved during
simulations. The space saving can be more than 95% as compared to
saving compressed results of all runs.

Raw (100%) ISABELA (24%)

Research Details

— Store a small number of simulation results at full resolution into a code
book as prior knowledge

— Down sample remaining data into GMMs as the statistical signatures S (4.5%) Ours (0.44%)
- Dgta at an arbitrary paramet_er_configuration can be reconstructed fromthe  jmages produced by our super
prior knowledge and the statistical signatures resolution representations

— The priori knowledge only takes 0.44% of the original data for a cosmology

p - (N
. . . Ext -scal
simulation using Nyx Distribution-based | OHIO

Argonne & Do

sLosAlamos "V S oo

UNIVERSITY




Supporting New Science Communication ~RAPIDS/

Patterns and Data Models

Scientific Achievement

New communication algorithms in DIY enable efficient
implementation of more advanced analysis algorithms
and support for working in situ with advanced simulation
data models (AMR).

Significance and Impact

DIY provides distributed programming support for VTK-m as
well as standalone analysis algorithms (including HEPonHPC
and CANGA partnerships).

Research Details

— Added distributed consensus protocol (rexchange) that enables
efficient communication between arbitrary pairs of blocks.

— Added support for AMR data, enabling in situ analysis of advanced
simulations.

— Better integration with VTK-m and ParaView (Kitware).

New support for AMR domain
decomposition allows direct in
situ import of the simulation data

rexchange communication pattern
implements a distributed consensus
protocol and supports communication
beyond the block’s neighborhood.

Argonne &




£ Swn U.S. DEPARTMENT OF Offi f e
@ENERGY oo " RAPIDS/

Machine Learning
and Al

Executive Order 13859 of February 11, 2019

Maintaining American Leadership in Artificial Intelligence

By the authority vested in me as President by the Constitution and the
laws of the United States of America, it is hereby ordered as follows:

Section 1. Policy and Principles. Artificial Intelligence (AI) promises to
drive growth of the United States economy, enhance our economic and
national security, and improve our quality of life. The United States is
the world leader in AI research and development (R&D) and deployment.
Continued American leadership in Al is of paramount importance to main-
taining the economic and national security of the United States and to
shaping the global evolution of Al in a manner consistent with our Nation’s
values, policies, and priorities.



Machine Learning =~ RAPIDS/

Domain-specific applications of deep learning, predictive
performance models, data- and model-parallel training

= Supervised learning methods:
— Deep learning for object classification and identification
— Automatic multiobjective modeling (AutoMOMML) to simplify model selection
— Asynchronous hyper-parameter and neural arch. search (DeepHyper tools)
— Autotuning parameters for code/application (SuRF)
— Performance, power, and energy modeling of novel HPC architectures;

» Unsupervised learning methods:
— Manifold learning/dimensionality reduction; approximation algorithms for
streaming data, streaming spectral clustering
— Useful for adaptive sampling (e.g., for molecular dynamics trajectories)

Reinforcement learning

Scalable parallel graph algorithms (LAGraph):
— Recast graph algorithms into linear algebra operations
— Building blocks and communication-avoiding algorithms applied to neural nets

Tools for understanding ML models (DeepVid, GANViz, DQNViz)




Using Roofline to Characterize ~RAPIDS/
TensorFlow on GPUs

Scientific Achievement I ey Tensor Core (FP16):125.0 TLOP
. . 1 vV FP32 batch size 64
Created a methodology for analyzing the execution of GPU o Frisbachsize 1o
Tensor Core-accelerated DL/AI applications using Roofline. v FPL6 batch size 64
L1 FMA (FP16): 28.3 TFLOP/s
W)
N HBM

Significance and Impact [ oo o
This work enables Roofline-based analysis of NVIDIA AT TR

Tensor Core accelerated AI/DL applications including // ///g@ No FHA (FP32), 7.1 TFLOPFS

Performance [GFLOP/s]
=
2

quantitative assessments of TensorFlow performance on
NVIDIA Volta GPUs.

10! 102 103
Arithmetic Intensity [FLOP/Byte]

. TensorFlow (forward pass) on V100
Research Details w (forward pass)

= Collaboration between RAPIDS, NERSC, and NVIDIA Results shown are relative to precision

= Formulated methodology for using NVProf to analyze tensor- (32b and 16b tensor cores) and batch size
core accelerated applications using Roofline (16,32,64). Although tensor cores deliver

= Used Roofline to analyze the forward and backward phases in :::ofzg:;mzr;?r';’/sperf°rma"°e 's far from
TensorFlow as a function of FP16 and FP32.

= TensorFlow cannot sustain the theoretical 125TF/s due to a
lack of locality and data permutation overheads. isc |

Yang et al., “Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perimutter System”, CUG, 2019.

A
,,,,,,, |'"|

BERKELEY LAB




Understanding How Deep Learning Models Operate ?RA p[DS/

Scientific Achievement
Allow developers of deep learning models to open the
black box to see how and why the DNN model
functions, so as to further optimize its performance

Significance and Impact
Explaining Al decision-making is a key challenge in

the adoption of Al algorithms in scientific activities.

Visual analytics approaches can play a crucial role
in explaining modern Al models.

Research Details
— Deep Visual Interpretation and Diagnosis for Image
Classifiers (DeepVID) is a model-agnostic approach
for interpreting and diagnosing images classifiers,
providing a rich user interface for understanding
convolutional neural networks (CNNs).

— DeepVID is one tool in a suite of tools being
developed for understanding Al models.

444 749XN4CH4Y948%+] cooppseass
$74979%9592r4949¢4 oo
[#ly 44Uy 794 FUy VY oot
44490484940 94N o
49 +4Y 44y 9994944 oo [T17] !
9949449494 ¢a¢ta44 by b
$4999954999%99949y oo I u
WaY YUY a9 o HH
£94994494995% %7444
U444 44494Y44944¢ sono sstier
V479499949 %Yd949H44 - v
1919947447494 %% ppg— suzmed
Y949498U4br4at 4 o soes
K744 444549944 +2 b ;
# L
(@1) 337650 ti013 (E2] 2 e (B3)
Reset Polyline Reset Band band 512 Generate & s +: (I o >
-

Figure: DeepVID is a visual analytics interface for
understanding an image classifier based on variational
autodecoder (VAE). Our goal is to understand what
knowledge the neural network has acquired enabling it
to perform the image classification tasks. We visualize
the various aspects of the neural models that will help
the developer to optimize and diagnose the
classification model.

5] Extreme-scale
OHIO ]l))lsmbunon-bascd
ata

UNIVERSITY




Robust I/O Performance Modeling by Automated ?RA PIDS/

Hardware/Software Change Detection |
W il
% |

Scientific Achievement Ao? ".”N\ ﬁ 4”,1' } if w’l‘ ) "i;'l
Developed a machine-learning-based 1/0O performance o< W\’ [‘* H(u,w. '% ;1‘ 'w
!

W
‘ 4‘"

(L
modeling approach that is robust to HPC system state changes ; h ”l ‘ .l‘m
(e.g., hardware degradation, hardware replacement, software 2" |
upgrades). —_— SoftwareUpd(I I—- BIOC:D I—— E-E:iviswve - GPTIS | )

Significance and Impact
Automatically identifies hardware and software changes :
that affect 1/0 performance in HPC systems and adapts our
performance model, allowing better prediction and <

potentially improving the system utilization and application Online method tHat monitors the change in the

scheduling. I/O performance of an application and adapt
the model to these changes

é 09/2017
@

Research Details

We use application 1/O performance data collected on

* Online Bayesian detection to automatically identify the \ : i
. . ) Cori, a production supercomputing system at NERSC,
location of ever_‘ts that lead to C_hanges in near-real time o to demonstrate the effectiveness of our approach. The
* Moment-matching transformation that converts the training results show that our robust models obtain significant
data collected before the change to be useful for retraining. reduction in prediction error---from 20.13% to
. A hd trated /O perf data obtained 8.28% when the proposed approaches were used in
pproac; emonstrated on perrormance data obtainead on /O performance modeling.
Lustre file system at NERSC.
ey Argonne &

S. Madireddy,et al. Adaptive Learning for Concept Drift in Application Performance Modeling, Preprint, ANL/MCS-P9132-0918, 2019.
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Gotta Catch’em All!

~RAPIDS/

Tige___________________________________________Pl__________[Prog.IRAPIDS Member(s

Coupling Approaches for Next-Generation Architectures
(CANGA)

P. Jones

Prob. Sea-Level Projections from Ice Sheet and Earth System S. Price

An integrated system for optimization of sensor networks
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...and more ...
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Thanks to the RAPIDS Team!
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This material is based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program.
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For general questions: For engagement discussion:
Rob Ross <rross@mcs.anl.gov> Anshu Dubey <adubey@anl.gov>
Lenny Oliker <LOliker@lbl.gov> Sam Williams <swwilliams@lIlbl.gov>
On the web: ... or just reach out to the RAPIDS

http://www.rapids-scidac.org person that you already know!
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